
Journal of Computational Physics 228 (2008) 619–640
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
An anisotropic scale-invariant unstructured mesh generator
suitable for volumetric imaging data

Andrew P. Kuprat *, Daniel R. Einstein
Pacific Northwest National Laboratory, Biological Monitoring and Modeling, 902 Battelle Blvd., P.O. Box 999, MSIN P7-58, Richland, WA 99352, United States
a r t i c l e i n f o

Article history:
Received 22 June 2007
Received in revised form 3 June 2008
Accepted 18 September 2008
Available online 18 October 2008

PACS:
87.15.Aa
87.19.Uv
87.57.�s
87.61.�c
46.15.�x
02.70.�c

Keywords:
Computational fluid dynamics
Meshing biological structures
Delaunay
0021-9991/$ - see front matter � 2008 Elsevier Inc
doi:10.1016/j.jcp.2008.09.030

* Corresponding author. Tel.: +1 509 376 6227; fa
E-mail address: andrew.kuprat@pnl.gov (A.P. Ku
a b s t r a c t

We present a boundary-fitted, scale-invariant unstructured tetrahedral mesh generation
algorithm that enables registration of element size to local feature size. Given an input
triangulated surface mesh, a feature size field is determined by casting rays normal to
the surface and into the geometry and then performing gradient-limiting operations to
enforce continuity of the resulting field. Surface mesh density is adjusted to be propor-
tional to the feature size field and then a layered anisotropic volume mesh is generated.
This mesh is ‘‘scale-invariant” in that roughly the same number of layers of mesh exist
in mesh cross-sections, between a minimum scale size Lmin and a maximum scale size
Lmax. We illustrate how this field can be used to produce quality grids for computational
fluid dynamics based simulations of challenging, topologically complex biological sur-
faces derived from magnetic resonance images. The algorithm is implemented in the
Pacific Northwest National Laboratory (PNNL) version of the Los Alamos grid toolbox
LaGriT. Research funded by the National Heart and Blood Institute Award 1RO1HL073598-
01A1.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Computational continuum physics is fast becoming an important part of biomedical research. Typically, the geome-
tries for biomedical problems are derived from medical imaging modalities such as magnetic resonance imaging (MRI),
and are geometrically complex compared to many engineering problems. Efficient unstructured mesh generation of
these geometries is especially challenging because no ‘true’ reference geometry exists, due to the finite resolution
of the imaging data. In this presentation, we propose a novel approach to this problem, based on a fast estimation
of the local feature size. Due to the inherent uncertainty in the imaging-derived geometries, we formally restrict our
attention to problems wherein there is a definite lower bound on the local feature size (i.e., on the order of a voxel)
and to situations where, given that uncertainty, we have the latitude to alter the envelope of the prescribed surface
mesh (i.e., on order a fraction of a voxel) to make the mesh suitable for computational fluid dynamics (CFD) or other
numerical simulations.
. All rights reserved.

x: +1 509 376 9449.
prat).

mailto:andrew.kuprat@pnl.gov
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

620 A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640
Excellent isotropic unstructured tetrahedral grid generation algorithms exist for creating finite-element or finite-volume
grids from closed triangulated manifolds [3,17]. Isotropic algorithms, i.e., approaches that attempt to construct tetrahedral
elements with nearly equal internal angles and approximately equal edge lengths, may be well suited to a large class of
biomedical problems. However, for certain classes of problems such as computational fluid dynamics, isotropic elements
may be neither necessary nor particularly appropriate. In boundary layer regions of the flow field, for example, derivatives
normal to the wall can be much greater than they are parallel to the flow. Anisotropic grids can better resolve these fea-
tures of the flow [11,22] by concentrating computational grid at the wall while keeping the overall computational cost of
the problem tractable. That efficiency applies to problems beyond CFD as well. An excellent reference on anisotropic mesh
generation is [9].

Achieving a pre-determined number of elements or a minimum number of elements through the smallest features of a
geometry, is important for correctly resolving gradients [8] or to capture physical variations such as laminae. An example of
the latter is the musculature of the heart which has three distinct layers of fiber orientations. A layered anisotropic approach
– whether advancing front or Delaunay – has the advantages of creating elements that are mostly orthogonal to the wall
while essentially decoupling the grid density in the normal and tangential directions. That decoupling raises the issue of
what criterion to adopt for the tangential density. With surfaces derived from imaging data, the organization and density
of the original surface triangles are functions of the resolution of the digital data rather than the numerical problem to be
solved. Simply generating a volume grid from the original surface spacing could result in grossly under-resolving the com-
puted field where the surface density is close to that of the local feature size or conversely over-resolving the computed field
where the surface density is much finer than that of the local feature size. These observations lead to a consideration of the
local feature size as an important criterion for sizing and gradation control of the surface that is complimentary to criteria
that attempt to preserve surface features, topology and curvature.

In large part, previous attempts to base grid density on a concept of local feature size or scale have either been based on
the definition of ‘‘throw-away” background grids onto which a local feature size field was computed [20,31,29,21], or have
been based on point-insertion techniques to locally refine – but not de-refine – coarse tetrahedral grids [16], or have been
based on advancing fronts [10,20]. An earlier related approach was based on Dijkstra’s algorithm and element subdivision
[8]. As an example of an approach based on a pre-computed feature size field, Persson [21] recently defined a local feature
size field on a background grid. The feature field was defined locally as the sum of the distance of a given point to the bound-
ary and to the medial axis. Element sizes were determined by gradient-limiting competing local element size fields based on
the feature field and the curvature field. The disadvantages of this and related approaches are twofold. First, the medial axis
of a triangulated manifold is inherently unstable in the sense that small perturbations in the surface triangulation can lead to
large perturbations in the medial axis and thus also in the definition of local feature size. Second, the construction and com-
putation of a feature size field on a ‘‘throw-away” background grid is computationally expensive.

In this paper, we define a feature size field on an input triangulated surface mesh without a background grid and with-
out referencing the medial axis. Thus, determination of the feature size field is not only computationally efficient, but also
robust in the sense that it is continuous and does not change unreasonably under perturbation of the surface mesh. Field
values at a point on the surface are generated by shooting a ray from the point in the direction of an inwards ‘‘synthetic”
normal that is well-defined even where the surface is not smooth and measuring the distance until the surface is re-inter-
sected by the ray. We then perform a gradient-limiting operation on the field to enforce continuity. Layered, conforming,
anisotropic volume mesh generation is accomplished directly with this surface field. Prior to volume mesh generation, we
modify the surface mesh so that edge lengths are proportional to the feature size field, with the constraint that refinement/
de-refinement preserves topology and geometry. Surface modification is iterated with a volume-conserving smoothing,
with the result that surface triangles are well-shaped, well-organized and graded. Following surface modification, layers
of points are strategically placed along the rays normal to the surface and connected into orthogonal layers with a Delaunay
algorithm.

Because we employ Delaunay meshing, the degree of anisotropy is effectively limited by the consideration that sampling
frequency on the boundary must be greater than some multiple of the local feature size in order for the topology of the input
surface to be known rigorously to be recoverable from the Delaunay volume mesh [1]. We note, however, that in practice
surface point densities may be lower than the rigorous result and still lead to successful boundary recovery. Point densities
in [2] as well as in this work are significantly lower. These point densities translate into modest degrees of anisotropy that
can still bring significant savings in terms of overall element count.

We show the results of our algorithm on three complex geometries derived from medical imaging data: a rat nose
phantom (genus 1), a rat lung (genus 0) and a human heart (genus 12). The resulting meshes are deemed scale-invariant
in that it is possible to obtain a desired number of layers across cross-sections in the domain, independent of scale. For
each of these cases, we give aspect-ratio statistics that indicate the high quality of tetrahedra that the approach is able to
produce.
2. Approach

Let S be an oriented closed unstructured surface mesh consisting of planar triangles. It is desired that we produce a vol-
ume mesh V consisting of tetrahedra that is bounded by S. Herein we focus on a surface derived from imaging data. Thus, S is

A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640 621
a volumetric constraint or isosurface produced by the Marching Cubes algorithm [15,19], rather than a surface of known
geometry. As such, it has finite resolution and a minimum resolvable feature size of a single voxel. In order to produce a mesh
that is useful for numerical analysis, we perform the operations of smoothing, refinement and de-refinement to S, subject to
that volumetric constraint by limiting perturbations to S to a small fraction of a voxel. In practice, this assures that the geom-
etry is unchanged within experimental uncertainty and that the topology is respected.

We begin this remeshing of the isosurface with several iterations of volume-conserving smoothing ([13] Algorithm 4)
which sweeps through nodes of the surface mesh, and for each node performs a Laplacian smoothing followed by node
repositioning to exactly maintain the volume enclosed by the surface mesh. In Fig. 1, we see both the jagged features of a
Marching-Cubes-generated isosurface derived from magnetic-resonance data (A,B), followed by the result of applying vol-
ume-conserving smoothing (C,D). The volume of the smoothed object has been conserved to round-off error and the motion
of the surface is a fraction of a voxel.

We allow S to consist of one large enclosing closed surface S0 and possibly any number S1; . . . ; Sn of closed surface ‘‘holes”
inside of S0. Any of the surfaces S0; S1; . . . ; Sn may have ‘‘handles” (have nonzero genus). In the biomedical applications of
interest to us, we desire each cross section of V to have a certain number M of layers of elements across (see Fig. 2). We thus
desire a ‘‘scale-invariant” meshing algorithm where a cross-section with diameter d will be filled by M layers of mesh, inde-
pendent of d, as long as d is within a range of feature sizes that is bracketed away from zero:
0 < Lmin 6 d 6 Lmax: ð1Þ
Fig. 1. Marching Cubes derived isosurface, before and after volume-conserving smoothing.

d1

M layers

d2

Fig. 2. M layers across cross-sections.

622 A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640
If d < Lmin, we allow a mesh cross-section to receive less than M layers; if d > Lmax, we allow a mesh cross-section to receive
more than M layers (1) thus defines our ‘‘zone of invariance”. We assume Lmin > 0, because the resolution of our data is one
voxel; Lmin is usually a specified fraction of a voxel width.

We now make (1) more precise, by specify how d, the ‘‘feature size” is to be defined and evaluated.
2.1. Definition of local diameter

Usually the feature size at a point x on a surface S is defined as the distance from x to the closest point of the medial axis of
the volume V bounded by S [1,21]. Here the medial axis is the set of points in V defined by
Fig. 3.
figure)
to the n
y 2medial axis of V () y has more than one closest point z 2 S: ð2Þ
Fig. 3 shows the pitfalls of this definition. If S is the surface of a sphere, the medial axis of V, the solid sphere bounded by S,
is the single point at the center of V. The feature size at any point x 2 S would thus be equal to the radius of the sphere.
However, if the surface S is instead represented as a triangular faceted surface (e.g. make S the largest icosahedron that fits
inside the original sphere), then the medial axis of the solid bounded by S consists of points on the planes that bisect the
solid angles between adjacent pairs of facets. Then points x on S will be deemed to have feature sizes ranging from zero (if x
is on a boundary edge of S) to rins, where rins is the largest inscribed radius of any facet in S. Thus, the mere act of discret-
izing the geometry by representation by piecewise linear facets has caused a violent change in the definition of ‘‘feature
size”.

In contrast, we wish to define a feature size field that is more robust with respect to perturbations of the geometry and
which does not require construction of the medial axis. Our feature size will be roughly twice that computed using the pre-
X X

Y

Y

Difficulty with medial-axis based definition of feature size. A small alteration in a figure changes a one-point medial axis (center of circle on left
to a complex medial axis (angle bisectors on right figure). This causes a great change in feature size if feature size at x is defined to be distance from x
earest point on the medial axis (y).

A B

x1

x2

x3

x4

x1

x2

x3

x4

D
(x

1)

d(
x 1

)

D(x2) d(x2)

Fig. 4. (A) Definition of ‘‘local diameter” DðxÞ is length to first re-intersection with surface of a ray normally cast inwards from x. (B) Gradient-limiting of
DðxÞ field yields dðxÞ field which removes effect of ‘‘lucky rays” that travel far further than twice the distance to the medial axis.

A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640 623
vious definition, in the case that the geometry is smooth and free of low amplitude undulations. In addition, it will be robust
to perturbations.

For any point x 2 S, we define the ‘‘raw feature size” or ‘‘local diameter” DðxÞ as the length of the line segment formed by
shooting a ray from x in the direction of n̂ðxÞ, the inward normal at x, and truncating the ray at the first new intersection
with S. That is
DðxÞ �minfk > 0 j xþ kn̂ðxÞ 2 Sg: ð3Þ
See Fig. 4(A). In the case that S is differentiable at x, and thus the classical normal exists, we have that points on the segment
xþ kn̂ðxÞ for very small k > 0 have a single closest point on the boundary, namely x. When k ¼ DðxÞ

2 ;xþ kn̂ðxÞ has equal dis-
tance to x and the boundary point xþ DðxÞn̂ðxÞ. If the ray does not intersect the medial axis at a point before xþ DðxÞ

2 n̂ðxÞ, we
would have to conclude that xþ DðxÞ

2 n̂ðxÞ is on the medial axis. We thus conclude that the distance from x to the medial axis
is bounded above by DðxÞ

2 .
In the case that S is differentiable at x, the classical normal exists and so the choice of n̂ is unambiguous. The usual case,

however, is that S is piecewise linear, and that in fact x is a vertex where the normal is not classically defined. In this case, we
define a ‘‘synthetic normal” at x as follows. Consider the neighborhood
N �ðxÞ � B�ðxÞ \ S; ð4Þ
where B�ðxÞ is the solid ball of radius � centered at x. We note that in the case that x is a vertex in the piecewise linear geom-
etry of S, that the classical normal is defined everywhere in N �ðxÞ except for a set of surface measure zero. That is because
N �ðxÞ is a piece of surface near x, while the only points y 2 S that the classical normal n̂ðyÞ is not defined on are those points
that reside on a set of surface edges incident upon x. With this in mind we define the ‘‘synthetic” normal as
θ1

θ4 θ5

θ6
nsynth

xi

θ2

θ3

Fig. 5. The synthetic normal at a vertex i of a piecewise linear surface is the angle-weighted normal.

Fig. 6.
With gr

624 A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640
n̂synthðxÞ � lim
�!0

R
y2N �ðxÞ n̂ðyÞdS

k
R

y2N �ðxÞ n̂ðyÞdSk : ð5Þ
The integral in the numerator of the right-hand side is well-defined (since the integrand is defined almost everywhere) and
indeed the limit exists when the patches of surface incident upon x are smooth. We note trivially that if the normal is clas-
sically defined at x, then n̂synth is equal to the classical normal and if x is a vertex of a piecewise linear surface, then
n̂synth ¼
P

ihin̂iP
ihin̂i

�� �� ; ð6Þ
where the sum is over the triangles Ti sharing x, the n̂i are the normals of the Ti, and hi are the vertex angles at x for each of
the Ti. We can thus say that for piecewise linear surfaces, the ‘‘synthetic normal” is an ‘‘angle-weighted” normal [27] (Fig. 5).
Since (5) indicates the synthetic normal is actually an intrinsic property of the surface independent of triangulation, we have
that it would not change much if surface deformation due to refinement/de-refinement is sufficiently small. Although this
normal is very robust [4], we doublecheck n̂synth actually points ‘‘into” the geometry by checking it makes a positive dot prod-
uct with all the n̂i. (In the highly unlikely case it does not, a value DðxÞ ¼ Lmax is assigned which will be reduced to a value
comparable with the feature size at neighboring nodes by the gradient-limiting operation to be described.)

So, choosing n̂ to be the synthetic normal, the ray proceeding from x in the direction n̂synth will again intersect S at least
once (since S is assumed closed) and DðxÞ is well-defined.

Note: We also perform an ‘‘outwards” interrogation of the geometry by computing another DðxÞ at x using (3) using
n̂ ¼ �n̂synth. This outwards value (which we call DoutðxÞ) is only finite in some areas at most (e.g. where S is concave) and
is used to ensure the topology of the final volume mesh agrees with the topology of the input surface mesh S in those regions.
Use of DoutðxÞ is discussed in Section 2.3.

Having defined the raw feature size by interrogation of the geometry (3), we then enforce the restriction (1) by perform-
ing ‘max’ and ‘min’ operations with Lmin and Lmax, respectively. To be clear, we restate that Lmin and Lmax are user parameters,
bounded below by a fraction of a voxel and bounded above by the largest dimension of the geometry. The last step in com-
puting a local feature size is now to modify DðxÞ so that we obtain a smooth function of x and S – so that feature size won’t
change much if the surface point x or if the surface S itself is perturbed slightly. This is accomplished by performing a gra-
dient-limiting procedure similar to that in [21].

In [21], the author defines a feature size function over a surface mesh, extends the definition to the entire volume en-
closed by the surface, and then performs gradient-limiting on the function. Given a desired bound G on the gradient of a fea-
ture size function d defined on a volume V ; d is limited by the following update:
dðxÞ min
y
ðdðyÞ þ G � distðx; yÞÞ: ð7Þ
Here distðx; yÞ ¼ kx� yk is the Euclidean distance in R3. The update (7) is performed repeatedly on a discrete Cartesian grid
until convergence occurs. Clearly the gradient-limited d is less than or equal to the original non-gradient-limited d and it
obeys
jdðxÞ � dðyÞj 6 Gkx� yk; ð8Þ
which means that d is Lipschitz continuous, with Lipschitz constant G. Since we are on a discrete mesh, this essentially
amounts to delivering the desired bound krdk 6 G.

In contrast, we perform the gradient-limiting operation (7) on dðxÞ which is initialized with the values of DðxÞ on the sur-
face and is not extended to the volume. Instead distðx; yÞ is to be interpreted as the distance between x and y measured on
the surface of S– the geodesic distance. Our algorithm (Algorithm 1) is performed on the unstructured surface mesh, rather
than a Cartesian volume mesh. The algorithm involves placing directed surface edges x1x2

��! of S into a priority queue [5]
ranked by
dðx1Þ � ðdðx2Þ þ Gkx1 � x2kÞ;
which is how much the gradient over the directed edge of d violates the gradient limit. (Only directed edges for which this
quantity is positive are placed in the queue.) The directed edge is then relaxed to satisfy the gradient limit and then all di-
n(xi)n(xj)

D(xi)D(xj)

n(xi)n(xj)

d(xi)d(xj)

A B

Without gradient-limiting DðxiÞ can discontinuously jump with a small perturbation in the surface S due to borderline clipping of local diameter ray.
adient-limiting, this jump in dðxiÞ is limited to Gkxi � xjk, where xj is a neighbor whose local diameter ray is robustly clipped.

A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640 625
rected edges in the neighborhood are added, deleted, or re-ranked in the priority queue as necessary. The process continues
until the queue is empty and hence the field dðxÞ is gradient-limited.

Algorithm 1: Processing of raw local diameter field
[Process local diameter field to be within limits and be gradient-limited so that it is an acceptable feature size field]

[Copy raw local diameter field to d]
For each surface node i

dðxiÞ DðxiÞ

[Force dðxÞ to lie between Lmin and Lmax]
For each surface node i

dðxiÞ minðLmax;dðxiÞÞ
dðxiÞ maxðLmin;dðxiÞÞ

[Reduce dðxÞ in tight concave areas (See Section 2.3).]
For each surface node i

dðxiÞ min dðxiÞ;2
M
K

DoutðxiÞ
� �

[Decrease dðxÞ to ensure gradient of d along edges is less than G]
For each node i

For each node neighbor j
excessði; jÞ dðxiÞ � ðdðxjÞ þ Gkxi � xjkÞ
If excessði; jÞ > 0 Then

[Priority queue P will contain directed edges with positive excess values]
Place directed edge xixj

��! in priority queue P
While P nonempty do

Pop xixj
��! with maximal excessði; jÞ from P

[Decrease dðxiÞ to conform to gradient limit]
dðxiÞ ðdðxjÞ þ Gkxi � xjkÞ
For all directed edges xixk

��! emanating from i
Recompute excessði; kÞ dðxiÞ � ðdðxkÞ þ Gkxi � xkkÞ
Add, delete, or rerank xixk

��! in P as appropriate
For all directed edges xkxi

��! incident on i
Recompute excessðk; iÞ dðxkÞ � ðdðxiÞ þ Gkxi � xkkÞ
Add, delete, or rerank xkxi

��! in P as appropriate
One question is what is a good value for G? In fact, it can be argued that a natural bound on G is Oð1Þ. That is because
our ‘‘feature size” is the length of a normal ray traversing a geometry, and for smooth geometries this is essentially double
the distance from the boundary point x to the medial axis – and a natural bound on the gradient of this distance is 1. This
latter assertion can be seen as follows. Let dMAðxÞ be the distance from x 2 S to the closest point on the medial axis of V.
That is
dMAðxÞ ¼ kx� PMAðxÞk; ð9Þ
where PRðxÞ is the closest point on the medial axis to x. Let D be an arbitrary change in x such that xþ D is also on S. Then
dMAðxþ DÞ ¼ kxþ D� PMAðxþ DÞk
6 kxþ D� PMAðxÞk
6 dMAðxÞ þ kDk:
Similarly,
dMAðxÞ 6 dMAðxþ DÞ þ kDk:
So
jdMAðxþ DÞ � dMAðxÞj 6 1 � kDk:
So dMAðxÞ is Lipschitz continuous with Lipschitz constant no larger than 1. It is quite easy to construct a geometry where the
Lipschitz constant of dMAðxÞ is arbitrarily close to 1. Thus, dMAðxÞ is Lipschitz continuous over all geometries with uniform
Lipschitz constant 1. Since our function dðxÞ, the ‘‘local diameter” at x typically behaves like 2dMAðxÞ (in the case of smooth

626 A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640
geometries), we have that ‘‘2” would be a natural Lipschitz constant to enforce for dðxÞ. In practice, we have found increasing
the amount of gradient-limiting further is desirable for producing tighter, more disciplined layers of volume mesh parallel to
the surface mesh in the volume mesh generation phase. For our runs, we have used G ¼ 0:85 which is a value that has
worked well over all geometries.

Our resulting gradient-limited feature size or ‘‘local diameter” function dðxÞ defined over surfaces is now a continuous
function of x (Fig. 4(B)). If S is perturbed slightly, a ray shot from a vertex xi on the surface might transition from being
clipped to not being clipped by an interceding piece of geometry (as in Fig. 6), but the fact that dðxÞ is gradient-limited will
limit the jump in dðxiÞ to being bounded by Gkxi � xjk where xj is a neighbor of xi that already ‘‘sees” the interceding geom-
etry. (Note: this argument breaks down if xi possesses no neighbor xj that sees the interceding geometry, but this is unlikely
if the surface reasonably resolves the geometry. In the following sections we show how a good discretization of S by a surface
grid is found and then a final ‘‘stable” dðxÞ can be computed on this improved surface discretization if necessary.) Since the
jump in dðxÞ is usually bounded by a small multiple of the surface discretization edge length, it is reasonable to say that dðxÞ
behaves ‘‘smoothly” with respect to perturbations in the geometry S.

Although it would appear that it is a daunting task to construct DðxÞ by shooting rays from all surface vertices and
detecting all subsequent first intersections of these rays with S, it is in fact a rapid process. For this we employ an axis-
aligned bounding box (AABB) tree [25,12] that contains at its leaf nodes bounding boxes for each of the Nsurf triangles
discretizing S. This is a balanced binary tree where each node is assigned the smallest Cartesian axis-aligned bounding
box that contains the bounding boxes of its two children; this structure can be constructed in OðNsurf log Nsurf Þ time. The
root node is thus assigned a bounding box for the whole geometry. When we seek intersections of a ray with S, we thus
intersect the ray with the root bounding box and refine the query by asking which of the child boxes intersect the ray.
We then query the child boxes of only those boxes that are found to intersect the ray. (The ray-box intersection test is
quickly done.) We continue on in this way until in Oðlog NsurfÞ operations we obtain the leaf boxes of all surface trian-
gles that could possibly intersect the ray. We then simply compute the exact distance along the ray with the closest of
the candidate triangles so found to intersect the ray. The operation for computing DðxÞ thus has complexity
OðNsurf log Nsurf Þ.

2.2. Generation of a surface mesh discretization commensurate with dðxÞ

Let K be the desired anisotropy of layers that we wish to generate near the boundary of S. That is, we wish the average
surface triangle edge length at a point x on S to be K times the normal thickness of tetrahedra in layers parallel to the surface.
At the same time, we wish to establish M layers across the cross-section of the geometry. The resolution of these two require-
ments is to make the edge length of the discretization of S at x be proportional to the feature size dðxÞ at x. Indeed, if we
generate M layers of mesh across the ‘‘local diameter” dðxÞ, and the surface edge length in the neighborhood of x is
K
M dðxÞ, then the ratio of the base triangle edge length to the altitude of tetrahedra generated at x will be K

M dðxÞ= 1
M dðxÞ ¼ K

(assuming equal spacing of the M layers). This means that the tetrahedra generated on the surface layers will have constant
anisotropy K independent of x.

Algorithm 2: Edge bisection
[Algorithm refines mesh by bisecting edges exceeding a variable node-based bisection length tolerance]

Find set of edges E ¼ fe ¼ x1x2jlengthðeÞ > minðbisection lengthðx1Þ;bisection lengthðx2ÞÞg
While E–; do

Sort E in decreasing order of (Euclidean) length
For each e 2 E do

Refine terminal member of Rivara chain spawned by e
Recompute E
Surface modification as a function of local diameter consists of (1) Rivara edge bisection operations to establish a max-
imum edge length K

M dðxÞ over the whole surface mesh, (2) node merge operations, and (3) edge swap operations.
In regions where the edges are longer than K

M dðxÞ, we bisect edges (see Fig. 7), doubling the number of triangles incident
on the refined edge. We use the principle due to Rivara [23] that restricts edge bisection to those edges that are the longest
edges in their neighborhood which consists of all of the edges in all the elements that share the edge in question. If an
edge is not the longest edge in its neighborhood, we consider refining the edge that is the longest edge in the neighbor-
hood as a precondition for refining the desired edge. Continuing recursively in this fashion, a ‘‘Rivara” chain is constructed
which ends in a terminal edge that is in fact the longest edge in its neighborhood and which can be bisected. Continued
attempts to refine an edge will result in the refinement of a certain number of terminal edges until the original edge is
eventually refined. The effect of the refinement of the additional edges is a stable refinement that tends not to degrade
element quality. The edge bisection algorithm is given in Algorithm 2. bisection_length as stated in the algorithm is
K
M dðxÞ.

A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640 627
Algorithm 3: Node merging
[Algorithm de-refines mesh by merging nodes to neighboring nodes where appropriate]

Do until nothing changes
For each node i

Order node neighbors j by increasing distance from i
For each neighbor j of i

If kxi � xjk < merge length Then
If damageðxi ! xjÞ < toldamage Then

If minimum inscribed radiusðfTnew
k gÞP 1

2 � minimum inscribed radiusðfTkgÞ Then
merge(xi ! xj)
break out of inner For loop
The node merging algorithm is given in Algorithm 3. We sweep through the mesh, considering nodes i and whether it
is advisable to merge them into their neighbors j. (See Fig. 8.) If a merge xi ! xj would take place, the triangles fTkg con-
taining node i would be replaced by a new set of triangles fTnew

k g all containing node j. After a sufficient number of passes,
the surface mesh will be de-refined where needed. Nodes are attempted to be merged if edge lengths are less than one-
half the local target edge length in the neighborhood of node i. That is, merge_length is set to K

2M dðxiÞ. Setting merge_
length equal to a fraction significantly less than the desired length prevents ‘‘thrashing” where node merge and edge
bisection operations pointlessly alternate in the same region. This has the effect that observed anisotropies of elements
will actually be in a range between K

2 and K. (Layer thickness dðxÞ
M will however vary smoothly as dðxÞ is a smooth function

of x.)
The ‘‘damage” of the merge xi ! xj is a measure of the deformation of the surface caused by the merge. Our estimate

of surface deformation (the ‘‘damage” function) is given in the Appendix. If the damage of a merge is anticipated to cause
a damage exceeding 1% of the bisection length K

100M dðxiÞ
� �

, the damage is considered unacceptable and the merge oper-
ation xi ! xj is rejected. For a given node i, there may be one or more neighboring nodes j that produce an acceptable
damage estimate, even if some neighboring nodes j would result in unacceptable damage. The new triangulation Tnew

k

produced by an xi ! xj merge depends on which neighbor j is chosen and we only accept a new triangulation if the min-
imum inscribed radius in fTnew

k g would be at least one-half as big as the minimum inscribed radius of the original tri-
angulation fTkg. (If the minimum inscribed radius of the original triangulation is especially small, this requirement is
tightened further.)
A B

Fig. 7. Refinement of edge. (a) Two triangles that share an edge. (b) Two triangles have become four after bisection of edge.

Fig. 8. Merging of node i at xi to neighboring node j at xj .

Fig. 9. Surface edge swap: swapping mutual edge of two adjacent surface triangles.

628 A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640
Note that our node merge operation differs from the standard procedure presented in [6]. The standard algorithm greedily
contracts edges in ascending order of damage on a priority queue. Here we aspire for a target minimum edge length K

2M dðxiÞ
and greedily contract the shortest edges less than this length, stopping only if the damage caused by the single contraction or
the resulting grid quality is unacceptable.

Edge swap operations (Fig. 9) attempt to maximize the minimum vertex angle of a candidate pair of adjacent surface tri-
angles. We repeatedly sweep through candidates in the mesh and perform swaps if the minimum of the six vertex angles is
increased by swapping their common edge, provided that the damage to the surface by such a swap is deemed acceptable.
(As in the case of node merging, the damage should not exceed K

100M dðxiÞ
� �

and the damage is similarly estimated.)
Refinement and de-refinement of the surface alternates node merging with edge swapping until neither operation

changes the mesh, and then ends with edge refinement. This modification of the surface is repeatedly called and alternated
with volume-conserving smoothing.

After several such cycles, the surface mesh has been suitably processed so that the edge length at a node xi on the surface
is roughly K

M dðxiÞ..

Algorithm 4: Offset points
[Algorithm computes layers of points in volume V offset from the surface points of S]

For each node i 2 S
[Surface points become ‘layer 0’ volume points]
x0

i xi

dist 0
[Add points along normal ray from surface out to half raw local diameter. For uniform spacing, fractional distance
between points km ¼ 1

M, and approximately M
2 points will be layed down]

Do while m ¼ 1;2; . . .

If m 6 M
2

� 	
Þ then

dist distþ kmdðxiÞ

Else

dist distþ 1
M

minðDðxiÞ; LmaxÞ

If dist 6 DðxiÞ
2 then

xm
i xi þ distn̂synthðxiÞ

Else
Exit Do loop on m
2.3. Generation of a volume mesh from the processed surface mesh

Once a suitable surface mesh has been obtained with edge length on the surface of order K
M dðxiÞ at point i, we cast mi

points in the direction n̂synthðxiÞ (Algorithm 4) forming the point set
fxm
i j1 6 i 6 Nsurf ;0 6 m 6 mig; ð10Þ
where here we have defined x0
i � xi to be the surface points in S.

To explain the rationale of Algorithm 4, we provide the following argument. If we distribute bM2c points normally from xi to
xi þ 1

2 dðxiÞn̂synthðxiÞ, spacing them out equally (that is using spacing dðxiÞ
M between points on the normal ray), they will natu-

rally form layers. Indeed, for two points xi;xj on the surface that are close together and connected by an edge in S, we have
dðxiÞ � dðxjÞ due to gradient-limiting. Thus for small m, points xm

i and xm
j will be approximately the same distance normal

from the surface and will therefore have a high probability of being connected by an edge as well. We call these points

A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640 629
between xi and xi þ 1
2 dðxiÞn̂ðxiÞ ‘‘layer-making” interior points (More generally, we can choose the distance between xm�1

i and
xm

i to be some fraction kmdðxiÞ with
PM

2
m¼1km ¼ 1

2, with km monotonically increasing to create layers with closer spacing at the
boundary).

However, due to gradient-limiting, dðxiÞmay be quite reduced from the raw local diameter DðxiÞ defined in Equation (3).
Thus more points based on DðxiÞ rather than dðxiÞ may have to be laid down in places. These points will be termed ‘‘filler”
interior points.

Consider
LðxÞ ¼ y j y ¼ xþ kn̂ðxÞ;0 6 k 6
1
2

DðxÞ

 �

:

We call LðxÞ a semi-diameter segment associated with the surface point x.

Lemma 1. Coverage by Semi-diameter segments. If S is closed and C2 and thus possesses a classical normal at each point,
then V (the volume bounded by S) is covered by all the semi-diameter segments associated with all points of S. That is
V ¼ [x2SLðxÞ:
Proof 1. Clearly for each x, LðxÞ# V , so V � [LðxÞ. Clearly S #[LðxÞ. Now let y be any point in the interior of V. Let x be
x2S x2S

the closest point on S to y. That is, choose some xc such that ky � xck ¼minx2Sky � xk. Then we claim y 2 LðxcÞ. First, it must
be true that ðy � xcÞkn̂ðxcÞ. For otherwise, one could choose a point on S in the neighborhood of xc closer to y, contradicting
our assumption that xc is a closest point to Y. Suppose the ray starting from xc in the direction n̂ðxcÞ has a first re-intersection
with S at xopp

c . Then kxopp
c � xck ¼ DðxcÞ by (3). We have that xc; y, and xopp

c are collinear and since xc is a closest point to y,
ky � xck 6
1
2

DðxcÞ:
Hence, y 2 LðxcÞ. Since y is an arbitrary point in the interior of V, we conclude V #[x2SLðxÞ. Hence V ¼ [x2SLðxÞ h

By the lemma, we surmise that if we spread points along all the semi-diameter segments that we would adequately cover
V. This is not rigorously true if the conditions of the lemma are violated. That is, if S has a sharp corner where it has no clas-
sical normal, there could be a gap in the coverage of the interior. Strictly speaking, there is no classical normal at any vertex
of the piecewise linear S, but if the number of nodes on S provide sufficient angular resolution, the idea of the lemma is effec-
tively applicable to S.

However we had previously determined that we want to distribute points between xi and xi þ n̂synthðxiÞ dðxiÞ
2 at equal inter-

vals in order to form layers. Due to gradient-limiting, we could have dðxiÞ < DðxiÞ. Also we may have adjusted dðxiÞ so that
Lmin 6 dðxiÞ 6 Lmax. Thus it is quite possible that dðxiÞ–DðxiÞ. In this case, what is the best resolution for these contradictory
criteria?

In a very tight space where DðxiÞ < Lmin, we have that the minimum spacing between nodes should be Lmin
M . Thus we cover

the distance from xi to xi þ n̂synthðxiÞ DðxiÞ
2 with points spaced uniformly dðxiÞ

M ¼
Lmin

M starting from the boundary. Potentially, less
than bM2c points will be laid down (making less than M layers across) but that is a necessary consequence of our limiting the
feature size to a lower bound of Lmin.

If dðxiÞ < DðxiÞ, we must place bM2c points between xi and xi þ n̂synthðxiÞ dðxiÞ
2 because the gradient-limited dðxÞ field varies

smoothly along the surface; placing them instead from xi to xi þ n̂synthðxiÞ DðxiÞ
2 would cause significant jumps in the distances

from boundary points to corresponding interior points at some adjacent boundary nodes. However to guarantee filling out of
the interior, we must add additional points between xi þ n̂synthðxiÞ dðxiÞ

2 and xi þ n̂synthðxiÞ DðxiÞ
2 . In this interior region, we con-

sider the feature size to be minðDðxiÞ; LmaxÞ and add these ‘‘filler” interior points with spacing 1
M minðDðxiÞ; LmaxÞ to fill out the

semi-diameter segment.
The points generated in Algorithm 4 are handed off to the Delaunay mesh generator described in Algorithm 5. A ‘‘big tet”

is made which encloses the region to be meshed in R3 and the points fxm
i g are inserted layer by layer using the incremental

point insertion algorithm of Watson [28]. In the Watson algorithm, the insertion of a new point xm
i leads to removal of all

tetrahedra whose circumspheres contain the point. (When the tetrahedra are removed a simply connected ‘‘insertion cavity”
is formed and each of the triangular bounding facets of the cavity are visible to the new point.) In the standard Watson algo-
rithm, xm

i is connected to each of the facets bounding the cavity to form a set of tetrahedra that fill the cavity and the pro-
cedure continues with insertion of the next point in the insertion list. In our version of the insertion algorithm, we abort the
insertion of xm

i if m > M
2

� 	
– that is, if xm

i is a ‘‘filler” interior point greater than a distance dðxiÞ
2 but less than a distance DðxiÞ

2 from
xi – if it would result in the formation of a tetrahedron containing an edge that would connect xm

i to a boundary point x0
j on S.

The reason is that filler interior points can be on ‘‘lucky” rays that travel far from the originating surface point (recall
Fig. 4(A)) and in particular they might pass very close to the surface of S in a totally unexpected location and consequently
degrade the quality of or even ruin the triangulation near the boundary. Indeed the purpose of filler interior points is to fill
gaps in the interior and they should not connect to the boundary. After running through the list once, we run through it a
couple of more times to be sure previously rejected points can’t be eventually inserted.

630 A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640
The final step of Algorithm 5 is rejection of tetrahedra that fall outside of the bounding surface S. We simply delete all
tetrahedra that do not have an internal point (i.e., a point xm

i , m P 1). It is however possible that a tetrahedron could be
formed that connects an internal point to a ‘‘layer 0” point across a small gap where boundary points are misaligned. We
prevent this by increasing the surface node density in such problem areas. This is accomplished as follows. The field Dout

computed in Section 2.1 is computed at the same time as the inwards pointing rays are computed. The purpose of Dout is
not to influence the size of elements, but to only prevent ‘‘connect-across” situations like in Fig. 10 occurring. We have found
that in these kinds of regions where separate pieces of geometry lie close together, it is necessary to have the surface edge
length less than 2DoutðxÞ in order to prevent these situations. Since we create a mesh with characteristic edge length K

M dðxiÞ
using the refinement, de-refinement and swap operations previously mentioned, we thus desire
Fig. 10
formed
Delaun
K
M

dðxiÞ 6 2DoutðxÞ ð11Þ
To force this, in Algorithm 1, we accordingly reduce dðxiÞ where necessary so that (11) holds with equality before the final
gradient-limiting operation of the feature size field d. This can in principle lead to spots where dðxiÞ < Lmin, but in this case it
is more important to prevent incorrect grid topology at the expense of having some small cells.

We note that this increase in surface density to recover surface topology under Delaunay triangulation is an issue ad-
dressed by Amenta et al. [1,2]. In [1] a high surface point sampling density is required for a rigorous proof that correct surface
topology will be recovered under 3-D Delaunay triangulation. In [2] a much lower density is shown to work in practice. Our
required point density (as forced by (11)) is also much lower and we attribute this to the fact that our point sets are isotrop-
ically distributed on the surface and then stacked along the normals in the volume. This is a highly advantageous configu-
ration for avoiding the ‘‘connect-across” phenomenon. Thus, we enjoy significant decreases in surface point density required
to avoid incorrect topology. We note however that our suggested point density necessary to prevent incorrect topology for
our normally-distributed point distributions is simply based on experience and that we always perform a topology check to
ensure a clean boundary. We sweep through all surface nodes in the 3D mesh and check that the incident tetrahedra on each
surface node form a single face-connected component. If not, the problem is re-run with a higher surface density in the prob-
lem region.

2.4. 3-D mesh improvement operations

After the 3-D mesh has been generated by Algorithm 5, adjacent layers of volume points generated from the vertices of a
surface triangles will tend to form prisms (see Fig. 11). Many adjacent prisms in the same layer will have inconsistent tri-
angulations, resulting in a thin sliver element between them (see Fig. 12). These slivers can in many cases be flipped away
using a 3! 2 swap operation (see Fig. 13). It has been our experience that the following heuristic volume criterion elimi-
nates slivers so that over 99% of the elements are not slivers and the swaps do not significantly disrupt the layer structure
of the mesh. We perform a 3! 2 swap operation if the minimum tetrahedral volume in the new set of (2) tetrahedra yielded
by the operation is greater than 3 times the minimum tetrahedral volume in the old set of (3) tetrahedra eliminated by the
operation. We use minimum tetrahedral volume instead of a worst aspect ratio criterion, because worst aspect ratio might
improve if perfectly good anisotropic layers are destroyed and this is not our intent. We intend to rid ourselves of slivers
within an anisotropic layer while preserving the layer. Nevertheless, tetrahedra with aspect ratio much higher than K
(the anisotropy of the point distribution) will generally be flipped away when the volume flipping criterion is employed
(Note: although the vast majority of flips are 3! 2, we find that a very small number of potential 2! 3 flips and 4! 4 flips
also satisfy the volume criterion and are flipped as well. Topologically, the 2! 3 flip is the opposite of the 3! 2 flip, while a
diagram showing a 4! 4 flip is given in [9, p. 225]).
. Connect-across phenomenon where separate pieces of the mesh region lie close together. In the figure, the circumcircle of external triangle b, c, d
with ‘layer 0’ points barely excludes the ‘layer 1’ points a, e. If the two meshed regions approach any closer, triangle b, c, d will not be part of a

ay mesh and undesirable connection between the meshed regions occurs. Similar phenomena occur in 3-D. This is prevented by enforcing (11).

Tj

xi1
xi2

xi3n(xi1)

n(xi3)

n(xi2)

xi2
m-1

m-1xi1

xi3
m-1

xi2
m

xi3
m

mxi1

Fig. 11. Layer m� 1 and layer m nodes generated from vertices of a surface triangle Tj form vertices of a prism.

Fig. 12. Adjacent prisms with inconsistent (opposing diagonal) triangulations on their shared quad face force the Delaunay mesh to have a sliver.

A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640 631
Algorithm 5: Conforming Delaunay 3-D triangulation
[Take point set of Algorithm 4 and form layered Delaunay mesh that respects boundaries]

Create an initial mesh consisting of a single ‘‘big tetrahedron” containing all points in fxm
i g in its interior.

[Process all points from one layer before moving onto next layer]
Do m ¼ 1;2; . . . ;M

2 ; . . .

For each node i 2 S
If xm

i exists and has not been inserted into mesh Then
Compute insertion cavity Cðxm

i Þ consisting of the space occupied by all tetrahedra whose circumspheres con-
tain xm

i .
Insert xm

i iff connecting xm
i to triangular boundary facets of Cðxm

i Þ
(i) does not create extremely small tetrahedra and
(ii) does not connect a filler point xm

i with m > M
2 to a previously inserted boundary node x0

i0

Repeat above Do Loop a couple of times to see if previously rejected xm
i can be subsequently inserted.

[Delete tetrahedra exterior to S]
Delete all tetrahedra containing a point from the ‘‘big tet”
Delete all tetrahedra not containing an internal point xm

i with m P 1
Finally, we have developed a ‘tet crushing algorithm’ that inserts nodes on the opposed diagonals of the slivers and then
merges the nodes together, eliminating the slivers. The results from this heuristic algorithm as gauged by its performance on
the examples in Section 3 are good: all tetrahedra with very small aspect ratio are eliminated. Since we are given latitude to
make small finite deformations in the mesh, it is not surprising that results may exceed those of algorithms where connec-
tivity changes are allowed but node displacements are not performed. An example of the latter is sliver exudation [7]. Our tet
crushing algorithm will be presented elsewhere.

2.5. Overall tet mesh generation algorithm

The overall algorithm for producing tet meshes from an initial triangulated surface S is given in Algorithm 6. This algo-
rithm will produce a mesh where the typical cross-section has M equally spaced layers and the tet anisotropy is generally
between K

2 and K near the surface S.

Fig. 13. Three to two flip: replacing a set of three tets with two new tets that occupy the same volume.

632 A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640
Clearly one can alter the parameter settings given in Algorithm 6, but these standard settings produce satisfactory meshes
for a wide variety of input surfaces.

3. Examples

We give three examples of the use of the mesh generation algorithm.
Our first example geometry is the upper respiratory tract of a rat (genus 1). The geometry goes from nostrils (left hand

side of Fig. 14(A)) to trachea (right hand side of Fig. 14(A)). The data is obtained from magnetic resonance imaging and the
length scale is in voxel widths. The raw feature size exceeds 40 voxels at two isolated points where a few rays penetrate
down rather than across an airway. The largest feature, the trachea, is correctly estimated to be in the 20–23 voxel range.
Above the trachea are some folds that are in blue, meaning that they are the boundaries of smaller airways. These airways
are in fact called the ‘‘turbinates” and they are intricate, convoluted airways used by the olfactory system. The smallest raw
feature size is 0.2 voxels. In Panel B, we clip and gradient-limit the feature size field below at Lmin ¼ 0:5 voxel widths (elim-
inating dubious subvoxel features) and above at Lmax ¼ 8 voxel widths (eventually forcing more layers in the trachea). Panels
C and D show close-up pictures of the same piece of surface mesh before and after surface refinement, respectively. Edge-
bisection, node-merge, and edge-swap operations establish edge length between K

2M dðxÞ and K
M dðxÞ, where here we have cho-

sen meshing parameters K ¼ 4:2 and M ¼ 7.

Algorithm 6: Overall mesh generation algorithm
[Smooth initial marching cubes triangulation]
Perform Volume Conserving Smoothing (Algorithm 4 in [13])

for 10 sweeps with underrelaxation coefficient x ¼ 1.
[Improve surface mesh S]
Determine raw feature size DðxÞ using (3) and (6)
Gradient-limit DðxÞ to yield feature size dðxÞ using Algorithm 1
[Change S to have edge length between K

2M dðxÞ and K
M dðxÞ]

For i ¼ 1;3
Do until nothing changes

Merge nodes using Algorithm 3 with merge_length ¼ K
2M dðxÞ and toldamage ¼ K

100M dðxÞ
Swap surface edges (as in Fig. 9) with toldamage ¼ K

100M dðxÞ
Refine edges with Algorithm 2 with bisection_length ¼ K

M dðxÞ
Perform Volume Conserving Smoothing (Algorithm 4 in [13])

for 10 sweeps with underrelaxation coefficient x ¼ 0:1.
[Create Volume Mesh]
Create volume points using Algorithm 4 with km ¼ 1

M

Create volume tet mesh using Algorithm 5
Use 3! 2 swaps and other mesh improvement operations (Section 2.4) to eliminate slivers
In Fig. 15 we see vertical cutaway sections through the resulting volume mesh and in Fig. 16 we see a horizontal
cutaway section through the volume mesh. We note that we do indeed have 6 or 7 intact layers across airways as
desired.

In Fig. 16 we see a converged computation on the rat nose mesh using the commercial STAR-CD computional fluid
dynamics code [26]. Nasal inlets are extruded forward and trachea outlet is extruded backward to match the experimen-
tal setup where prescribed flow is applied at beginning of an inlet tube and zero pressure boundary conditions are pre-
scribed at outlet of exit tube (Inlet and outlet tubes, respectively intersect extruded nostril and trachea sections). A
description of our efforts at modeling airflow for purposes of particulate dosimetry estimation is given in [18].

Fig. 14. Surface mesh of rat upper respiratory tract. (A) Raw feature size function depicted. (B) Clipped, gradient-limited feature size function. (C) Close-up
of surface mesh at original density. (D) Close-up of surface mesh with revised density as determined by feature size function.

A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640 633
Our second example (Fig. 17) is a rat lung (genus 0). Meshing parameters were again set to K ¼ 4:2 and M ¼ 7. Magnetic
imaging data was acquired using silicone casts of pulmonary airways in a 9-wk-old, male, Sprague-Dawley rat. Panel A
shows the feature size field on the lung surface, as well as the locations of the cutaway sections B, C and D. Panel B shows
the interior tetrahedra in a large airway, with DðxÞ greater than Lmax, transitioning to a smaller airway with
Lmin < DðxÞ < Lmax. Panels C and D show sections through the trachea and a through a pair of airways downstream of the
bifurcation, respectively. Panels E and F show both the external boundary and the tetrahedra in the neighborhood of several
outlets. The outlet surfaces visible in panels E and F are not physical tissue surfaces but are cross-sectional surfaces at which

Fig. 15. Vertical slices from volume mesh of rat upper respiratory tract produced using Algorithm 6 with K ¼ 4:2 and M ¼ 7.

Fig. 16. Cutplanes along flow in CFD computation using volume mesh in rat upper respiratory tract. Nasal inlets are extruded forward and trachea outlet is
extruded backward to match experimental setup.

634 A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640
outflow boundary conditions are applied. As such, M layers go across the outlet rather than into the outlet. This is accom-
plished by constraining the physical tissue normals adjacent to each outlet to lie in the plane of that outlet.

Fig. 17. Vertical slices from volume mesh of rat lung produced using Algorithm 6 with K ¼ 4:2 and M ¼ 7. Panel A shows the feature size field on the lung
surface, as well as the locations of the cutaway sections B, C and D. Panel B shows the interior tetrahedra in a large airway, with DðxÞ greater than Lmax,
transitioning to a smaller airway with Lmin < DðxÞ < Lmax. Panels C and D show sections through the trachea and a through a pair of airways downstream of
the bifurcation, respectively. Panels E and F show both the external boundary and the tetrahedra in the neighborhood of several outlets.

A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640 635
Our third example (Fig. 18) is a human heart [30] of genus 12: Meshing parameters were again set to K ¼ 4:2 and M ¼ 7.
Panel A shows the feature size field on the surface of the heart, as well as the locations of sections B and C. Panel B is a vertical
cutaway through the heart, revealing the interior tetrahedra in the thick myocardium as well as the inter-atrial septum (de-
tail in D). Panel C shows a diagonal cutaway through the heart, revealing myocardium, arterial lumen (top left) and the edge
of the mitral valve. A magnified cross-section of the mitral valve is shown in Panel E. These cutaways demonstrate that we
were able to achieve nearly orthogonal layering at both top and bottom scales.

Finally, we present mesh quality statistics in Fig. 19 for the meshes produced in these three examples. Here we present
aspect ratio improvement, where for tetrahedra, we have defined:
aspect ratio � 2
ffiffiffi
6
p inscribed radius

length of longest edge
;

which has maximum value 1 for a regular tetrahedron. The cumulative aspect ratio improvement is critical in allowing us to
perform numerical computations on these challenging biomedical geometries.

4. Limitations and areas for future improvement

This algorithm deposits nodes along rays to the raw local half-diameter. For smooth geometries, this produces coverage of
the interior. However when there is a jump in the surface normal due to ‘‘man-made” non-biological features, such as a ma-
chined edge, there may be incomplete coverage. In this case, at surface points where the neighborhood has a jump in the
surface normal, we must cast multiple rays of interior points at various angles to the surface. For the smooth geometries
shown, this is not necessary.

Highly curved concave boundaries, such as encountered when meshing the complement of a tubular region are likely to
result in incomplete coverage of the interior region as in the case just mentioned. In this case the most straightforward ap-
proach is to let the feature size also contain a term for curvature:
DðxÞ ¼minðDray�shoot;2 � RcurvatureÞ; ð12Þ
where Rcurvature is the principal radius of curvature of smallest magnitude. This result is then gradient-limited as before. A
numerically stable algorithm for computing principal curvatures is given in [24]. Our experience with airway geometries
has been that this is not required, but we have found that meshing of the tissue space around the coronary arteries of
the heart necessitates this term.

Fig. 18. Vertical slices from volume mesh of human heart produced using Algorithm 6 with K ¼ 4:2 and M ¼ 7. Panel A shows the feature size field on the
surface of the heart, as well as the locations of sections B and C. Panel B is a vertical cutaway through the heart, revealing the interior tetrahedra in the thick
myocardium as well as the inter-atrial septum (detail in D). Panel C shows a diagonal cutaway through the heart, revealing myocardium, arterial lumen (top
left) and the edge of the mitral valve. A magnified cross-section of the mitral valve is shown in Panel E.

636 A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640
The scheme of depositing points along rays to half the local diameter can also cause significant overlap with some kinds of
geometries. Clearly, for a perfect sphere or torus there is no overlap, but for e.g. a (rounded) brick, there is significant overlap.
The biological geometries we deal with here are tubular or crevasse-like and there is usually little overlap. Extra points in the
interior region are usually acceptable. It is advisable to filter the set of interior points before Delaunay connection so that if
two interior points (generated from two different surface points) are by chance a small fraction of a voxel apart, the one
which is further from its surface generator point is deleted. (This filtration is rapidly done with a AABB tree.)

Our algorithm makes an automatic choice of when small-scale features should be ignored. In Fig. 20 in the left-side illus-
tration, the surface undulations are so gentle they do not figure into the feature size computed by the algorithm. Indeed rays
cast from points A and B miss neighboring features. The result is that the medial axis (dotted gray lines) is effectively ignored
and the feature size reflects only the larger scale size of the geometry. On the right-side illustration, the amplitude of the
undulations is large enough to be detected by the algorithm. Here, a ray cast normally from the inflection point between
a peak and a trough (point B0) intersects a neighboring feature, causing the feature size to be lessened to the scale of the
undulations (The feature size at the point A0 is also reduced as indicated, due to gradient-limiting of the feature size field).
Hence, the medial axis (dotted lines) is effectively recognized. We have found this automatic behavior to be desirable for
meshing our biological geometries. However, the user may demand some control over what is or is not an ‘‘ignorable” undu-

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

< 0
.01

0.0
1 -

 0.
02

0.0
2 -

 0.
05

0.0
5 -

 0.
10

0.1
 - 0.2

0.2
 - 0.5

0.5
 - 1.0

 N
um

be
r o

f T
et

ra
he

dr
a

Delaunay Flipping Tet Crushing

Binned Aspect Ratio

R
at

 U
R

T
R

at
 lu

ng
H

um
an

 H
ea

rt

Aspect Ratio

Minimum 9.62E-05 1.81E-03 8.32E-02
< 0.01 8309 23 0

0.01 - 0.02 12955 73 0
0.02 - 0.05 32181 320 0
0.05 - 0.10 29245 1154 5
0.10 - 0.20 44404 13013 5837
0.20 - 0.50 376128 354326 358242
0.50 - 1.00 744118 758154 755690

Aspect Ratio

Minimum 2.52E-04 7.05E-03 5.99E-02
< 0.01 7013 4 0

0.01 - 0.02 19960 77 0
0.02 - 0.05 119913 1983 0
0.05 - 0.10 306458 16398 254
0.10 - 0.20 551290 147502 67417
0.20 - 0.50 2189099 2017952 2045995
0.50 - 1.00 3646786 3775105 3772451

Aspect Ratio
Delaunay Flipping Tet Crushing

Minimum 2.92E-06 3.62E-04 5.89E-02
< 0.01 229620 1698 0

0.01 - 0.02 173384 2127
0.02 - 0.05 230592 3877 0
0.05 - 0.10 180810 11930 37
0.10 - 0.20 331993 103012 38661
0.20 - 0.50 2923158 2741282 2738166
0.50 - 1.00 5571754 5697029 5641834

0

Delaunay Flipping Tet Crushing

Delaunay Flipping Tet Crushing

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

< 0
.01

0.0
1 -

 0.
02

0.0
2 -

 0.
05

0.0
5 -

 0.
10

0.1
 - 0.2

0.2
 - 0.5

0.5
 - 1.0

 N
um

be
r o

f T
et

ra
he

dr
a

Delaunay Flipping Tet Crushing

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

< 0
.01

0.0
1 -

 0.
02

0.0
2 -

 0.
05

0.0
5 -

 0.
10

0.1
 - 0.2

0.2
 - 0.5

0.5
 - 1.0

 N
um

be
r o

f T
et

ra
he

dr
a

Delaunay Flipping Tet Crushing

Fig. 19. Mesh quality improvement by flipping and then tet crushing for one human and two rat geometries.

A
B

A’

B’

Fig. 20. Perturbation from circular shape in left-hand figure is too small to affect feature size. Larger perturbations in right-hand figure are not ignored.
Smaller feature size detected at B0 forces smaller feature size at A0 due to gradient-limiting.

A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640 637

638 A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640
lation on the surface. One solution that would cause the algorithm to recognize smaller undulations would be adding a cur-
vature correction to the feature size computation as in (12).

5. Conclusions

We have implemented in the PNNL version of the LaGriT grid management toolbox [14] an algorithm for the generation of
anisotropic meshes that are scale-invariant over a prescribed range. The algorithm relies on a concept of feature size that is
obtained by considering the lengths of rays that are shot normally from the surface into the volume and reintersect the sur-
face. This approach is especially suited to rapid, quality meshing of biological structures where CFD calculations require a
definite number of intact mesh layers in regions of great geometric complexity.

Acknowledgement

Research funded by the National Heart and Blood Institute Award 1RO1HL073598-01A1. The authors take this opportu-
nity to acknowledge the contributions of Drs. Kevin Minard and Rick Jacob (MRI data acquisition), Senthil Kabilan and Dr.
James Carson (MRI data segmentation and editing), and Dr. Rick Corley (program support). We also gratefully acknowledge
the helpful critical comments of the reviewers which significantly improved the manuscript.

Appendix A. Damage estimate for node merging

If we merge node i into merge j in the neighborhood Xi of xi, we create a new patch Xnew of piecewise linear triangles as in
Fig. A.1. Here, the triangles Tk in Xi that contain the edge xixj are eliminated (since the edge is contracted to a point) and all
other triangles Tk yield a new triangle Tnew

k by replacement of node i with node j and keeping the other two nodes the same.
Thus the action of merging node i to node j deforms the neighborhood Xi into Xnew; the thickness of the volume between

these two surface patches is thus a good measure of the damage of the merge operation. Note that in fact the volume be-
tween Xi and Xnew is tetrahedralized by the set of tetrahedra fT kg formed by adjoining the point xi to each of the triangles
in Xnew. The altitude of T k above its base Tnew

k is jðxi � xjÞ � n̂new
k j, where n̂new

k is the unit vector normal to Tnew
k . So the volume

swept out by merging i to j is formed by the union of tetrahedra sitting atop Xnew, none of which has altitude exceeding
A

Fig. A.1
Appear
sweeps
height bound �max
k
jðxi � xjÞ � n̂new

k j: ðA:1Þ
We thus naturally define damageðxi ! xjÞ to be this height bound.
Note that this damage estimate discriminates among possible merge neighbors in neighborhoods with creases, such as

depicted in Fig. A.2. Here the merge i! j has a damage estimate of zero, while, e.g. the merge i! k has a positive damage
estimate. For a sufficiently small damage tolerance, the merge i! k will not be performed.

We also perform an orientation check to make sure that merge i! j does not introduce a fold into the mesh. We define a
‘‘patch normal” xXi

, similar to (6) but instead each triangle is weighted by triangle area:
n̂Xi
�
P

kAkn̂k

k
P

kAkn̂kk
; ðA:2Þ
x j

B

T3
new

xi
xj

T1

Ωi Ωnew

T2

T3

T4

T2
new

T4
new

T5

T6
T5

new

C

3

4

2

5

. Merging of node i at xi to neighboring node j at xj. (A) Appearance before merge where neighborhood Xi of xi consists of N surface triangles Tk . (B)
ance after merge where replacement neighborhood Xnew consists of N � 2 new surface triangles Tnew

k . (C) Deformation of surface by this merge
out a volume that can be decomposed into N � 2 tetrahedra T k .

i j

k

Fig. A.2. Merging along crease ðxi ! xjÞ incurs far less damage than merging down the crease ðxi ! xkÞ.

A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640 639
where the sum is over the triangles Tk incident on node i and then Ak and n̂k are the areas and normals of the triangles. This
normal is more representative than n̂synth of the average normal direction of the whole patch Xi and in fact it is easy to prove
that it is independent of the position xi and is only determined by the geometry of the line segments comprising the patch
boundary @Xi.

To check that the merge i! j does not introduce a fold into the mesh, we check that if n̂new
k are the normals for the new

triangles in Xnew, that
n̂Xi
� n̂new

k > 0 8k: ðA:3Þ
If this condition is not obeyed, we surmise that merge i! j will introduce a fold into surface and we do not perform the
operation.

Appendix B. Damage estimate for surface edge swapping

The swap of the mutual diagonal of adjacent triangles (Fig. 9) also introduces damage. However, this operation can be
viewed as the merging of a hypothetical node xi on the midpoint of the initial diagonal to one of the vertices xj not on
the diagonal. Accordingly, the damage estimate damageðxi ! xjÞ from the previous section is employed. Also, to prevent
introduction of creases into the surface mesh, we use the orientation check (A.3) from the previous section.

References

[1] N. Amenta, M. Bern, Surface reconstruction by voronoi filtering, Discr. Comput. Geom. 22 (1999) 481–504.
[2] N. Amenta, M. Bern, M. Kamvysselis, A new voronoi-based surface reconstruction algorithm, Siggraph (1998) 415–421.
[3] T.J. Baker, Automatic mesh generation for complex three-dimensional regions using a constrained delaunay triangulation, Engineering with

Computers, Springer-Verlag, 1989. Num 5, pp. 161–175.
[4] J.A. B�rentzen, H. Aan�s, Signed distance computation using the angle weighted pseudonormal, IEEE Trans. Vis. Comput. Graphics 11 (3) (2005) 243–

253.
[5] Introduction to Algorithms, 2nd ed., Cormen, Leiserson, Rivest, and Stein, MIT Press, 2007.
[6] H. Edelsbrunner, Geometry and Topology for Mesh Generation, Cambridge University Press, 2001.
[7] H. Edelsbrunner, D. Guoy, An experimental study of sliver exudation, in: Proc. 10th Int. Meshing Roundtable, 2001, pp. 307– 316.
[8] R. Garimella, M.S. Shepard, Tetrahedral mesh generation with multiple elements through the thickness, Eng. Comput. 15 (2) (1999) 181–197.
[9] Delaunay Triangulation and Meshing, George and Borouchaki, Hermes, Paris, 1998.

[10] Y. Ito, A.M. Shih, B.K. Soni, Reliable isotropic tetrahedral mesh generation based on an advancing front method, in: Proceedings of the 13th
International Meshing Roundtable, Williamsburg, VA, Sandia National Laboratories, SAND #2004-3765C, September 19–22, 2004, pp. 95–106.

[11] K.E. Jansen, M.S. Shephard, M.W. Beall, On Anisotropic mesh generation and quality control in complex flow problems, in: Tenth International Meshing
Roundtable, 2001.

[12] A. Khamayseh, G. Hansen, Use of the spatial kD-tree in computational physics applications, Commun. Comput. Phys. 2 (2007) 545–576.
[13] A. Kuprat, A. Khamayseh, D. George, L. Larkey, Volume conserving smoothing for piecewise linear curves, surfaces, and triple lines, J. Comput. Phys. 172

(2001) 99–118. http://dx.doi.org/10.1006/jcph.2001.681.
[14] LaGriT – Los Alamos Grid Toolbox. <http://lagrit.lanl.gov>. For PNNL version, contact corresponding author.
[15] W.E. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface construction algorithm, Comput. Graph. 21 (4) (1987) 163–169.
[16] D.L. Marcum, Efficient generation of high-quality unstructured surface and volume grids, Eng. Comput. 17 (2001) 211–233.
[17] D.L. Marcum, N.P. Weatherill, Unstructured grid generation using iterative point insertion and local reconnection, AIAA J. 33 (9) (1995) 1619–1625.

0001–1452.
[18] K.R. Minard, D.R. Einstein, R.E. Jacob, S. Kabilan, A.P. Kuprat, C.A. Timchalk, L.L. Trease, R.A. Corley, Application of magnetic resonance (MR) imaging for

the development and validation of computational fluid dynamic (CFD) models of the rat respiratory system, Inhal. Toxicol. 18 (2006) 787–794.
[19] T.S. Newman, H. Yi, A survey of the marching cubes algorithm, Comput. Graph. 30 (5) (2006) 854–879.
[20] S.J. Owen, S. Saigal, Surface mesh sizing control, Int. J. Numer. Meth. Eng. 47 (2000) 497–511.
[21] P.O. Persson, Mesh size functions for implicit geometries and PDE-based gradient limiting, Eng. Comput. 22 (2006) 95.
[22] J.F. Remacle, X. Li, M.S. Shephard, J.E. Flaherty, Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods, Int. J. Numer.

Methods Eng. 62 (2005) 899–923.
[23] M. Rivara, New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations, Int. J. Num. Meth. Eng. 40 (1997)

3313–3324.
[24] S. Rusinkiewicz, Estimating curvatures and their derivatives on triangle meshes, in: Symposium on 3D Data Processing, Visualization, and

Transmission, 2004.
[25] B. Smits, Efficiency issues for ray tracing, ACM SIGGRAPH 2005 Courses, Session: Introduction to real-time ray tracing, Article No. 6, <http://

doi.acm.org/10.1145/1198555.1198745>, 2005.

http://dx.doi.org
http://lagrit.lanl.gov
http://doi.acm.org/10.1145/1198555.1198745
http://doi.acm.org/10.1145/1198555.1198745

640 A.P. Kuprat, D.R. Einstein / Journal of Computational Physics 228 (2008) 619–640
[26] STAR-CD, computational fluid dynamics (commercial) code, <http://www.cd-adapco.com/products/STAR-CD/index.html>.
[27] G. Thürmer, C. Wüthrich, Computing vertex normals from polygonal facets, J. Graph. Tools 3 (1) (1998) 43–46.
[28] D.F. Watson, Computing the n-dimensional Delaunay tesselation with application to Voronoi polytopes, Comput. J. 24 (2) (1981) 167–172.
[29] S. Yamakawa, C. Shaw, K. Shimada, Layered tetrahedral meshing of thin-walled solids for plastic injection molding FEM, in: Proceedings of the 2005

ACM Symposium on Solid and Physical Modeling, Cambridge, Massachusetts, 2005, pp. 245–255.
[30] Y. Zhang, C. Bajaj, B.S. Sohn, 3D finite element meshing from imaging data, Comput. Methods Appl. Mech. Eng. 194 (48–49) (2004) 5083–5106.
[31] J. Zhu, T. Blacker, R. Smith, Background overlay grid size functions, in: Proceedings of the 11th International Meshing Roundtable, Sandia National

Laboratories, September 15–18, 2002, pp. 65–74.

http://www.cd-adapco.com/products/STAR-CD/index.html

	An anisotropic scale-invariant unstructured mesh generator suitable for volumetric imaging data
	Introduction
	Approach
	Definition of Local Diameterlocal diameter
	Generation of a surface mesh discretization commensurate with d({\bf{x}})
	Generation of a volume mesh from the processed surface mesh
	3-D mesh improvement operations
	Overall tet mesh generation algorithm

	Examples
	Limitations and Areas areas for Future Improvementfuture improvement
	Conclusions
	Acknowledgement
	Damage Estimate estimate for Node Mergingnode merging
	Damage estimate for surface edge swapping
	References

